Junior doctors want more despite backing pay deal

Union says more above-inflation rises needed in coming years or there will be consequences.

Share Button

Pregnancy brain changes revealed in detailed scans

Repeated scans during one woman’s pregnancy show brain changes never charted before.

Share Button

Study links neighborhood environment to prostate cancer risk in men with West African genetic ancestry

West African genetic ancestry was associated with increased prostate cancer among men living in disadvantaged neighborhoods but not among men living in more affluent neighborhoods, according to a new study led by researchers at the National Institutes of Health (NIH). The findings suggest that neighborhood environment may play a role in determining how genetic ancestry influences prostate cancer risk. The study was published Sept. 16, 2024, in JAMA Network Open.

In the United States, most Black Americans have West African genetic ancestry, the researchers noted. Previous studies have shown that West African genetic ancestry is linked to increased prostate cancer risk among Black men, whose risk is higher than that of any other U.S. population group. However, it is unclear whether additional factors play a role in determining this ancestry-related risk.

To explore how the neighborhood environment and West African genetic ancestry may act together in influencing prostate cancer risk, researchers at NIH’s Center for Cancer Research at the National Cancer Institute (NCI) conducted a study with long-term follow-up that included 1,469 self-identified Black and White men from the greater Baltimore area. The researchers determined the men’s West African ancestry through genetic markers and neighborhood socioeconomic status through factors such as unemployment rate, income level, and percentage of households in poverty.

The researchers then examined the combined association of this ancestry and the neighborhood environment with prostate cancer risk and found that West African genetic ancestry was associated with prostate cancer risk among men living in disadvantaged neighborhoods but not among those living in more affluent areas.

The researchers posited that the increased ancestry-related risk in disadvantaged neighborhoods may be due to chronic stress — such as from racial profiling, housing discrimination, and exposure to violence — which can affect the immune system and cause high levels of inflammation, in turn promoting tumor growth.

Share Button

UK to offer vaccines to boost mpox protection

Mpox vaccines will be offered to thousands of people in the UK to boost protection against the virus.

Share Button

New XEC Covid variant starting to spread

It has some new mutations that might help it spread this autumn, scientists say.

Share Button

Girl died from sepsis after GP sent her home twice

Mia Glynn’s parents launch a claim for negligence after their daughter died hours after seeing a GP.

Share Button

How many of us will end up being diagnosed with ADHD?

Experts suggest that the number of people with ADHD is actually going to remain steady.

Share Button

Parents urged to get young children flu vaccine

The flu vaccine is given to most children as a quick, painless spray up the nose, with no injection.

Share Button

Early dark energy could resolve cosmology’s two biggest puzzles

A new study by MIT physicists proposes that a mysterious force known as early dark energy could solve two of the biggest puzzles in cosmology and fill in some major gaps in our understanding of how the early universe evolved.

One puzzle in question is the “Hubble tension,” which refers to a mismatch in measurements of how fast the universe is expanding. The other involves observations of numerous early, bright galaxies that existed at a time when the early universe should have been much less populated.

Now, the MIT team has found that both puzzles could be resolved if the early universe had one extra, fleeting ingredient: early dark energy. Dark energy is an unknown form of energy that physicists suspect is driving the expansion of the universe today. Early dark energy is a similar, hypothetical phenomenon that may have made only a brief appearance, influencing the expansion of the universe in its first moments before disappearing entirely.

Some physicists have suspected that early dark energy could be the key to solving the Hubble tension, as the mysterious force could accelerate the early expansion of the universe by an amount that would resolve the measurement mismatch.

The MIT researchers have now found that early dark energy could also explain the baffling number of bright galaxies that astronomers have observed in the early universe. In their new study, reported in the Monthly Notices of the Royal Astronomical Society, the team modeled the formation of galaxies in the universe’s first few hundred million years. When they incorporated a dark energy component only in that earliest sliver of time, they found the number of galaxies that arose from the primordial environment bloomed to fit astronomers’ observations.

You have these two looming open-ended puzzles,” says study co-author Rohan Naidu, a postdoc in MIT’s Kavli Institute for Astrophysics and Space Research. “We find that in fact, early dark energy is a very elegant and sparse solution to two of the most pressing problems in cosmology.”

The study’s co-authors include lead author and Kavli postdoc Xuejian (Jacob) Shen, and MIT professor of physics Mark Vogelsberger, along with Michael Boylan-Kolchin at the University of Texas at Austin, and Sandro Tacchella at the University of Cambridge.

Big city lights

Based on standard cosmological and galaxy formation models, the universe should have taken its time spinning up the first galaxies. It would have taken billions of years for primordial gas to coalesce into galaxies as large and bright as the Milky Way.

But in 2023, NASA’s James Webb Space Telescope (JWST) made a startling observation. With an ability to peer farther back in time than any observatory to date, the telescope uncovered a surprising number of bright galaxies as large as the modern Milky Way within the first 500 million years, when the universe was just 3 percent of its current age.

“The bright galaxies that JWST saw would be like seeing a clustering of lights around big cities, whereas theory predicts something like the light around more rural settings like Yellowstone National Park,” Shen says. “And we don’t expect that clustering of light so early on.”

For physicists, the observations imply that there is either something fundamentally wrong with the physics underlying the models or a missing ingredient in the early universe that scientists have not accounted for. The MIT team explored the possibility of the latter, and whether the missing ingredient might be early dark energy.

Physicists have proposed that early dark energy is a sort of antigravitational force that is turned on only at very early times. This force would counteract gravity’s inward pull and accelerate the early expansion of the universe, in a way that would resolve the mismatch in measurements. Early dark energy, therefore, is considered the most likely solution to the Hubble tension.

Galaxy skeleton

The MIT team explored whether early dark energy could also be the key to explaining the unexpected population of large, bright galaxies detected by JWST. In their new study, the physicists considered how early dark energy might affect the early structure of the universe that gave rise to the first galaxies. They focused on the formation of dark matter halos — regions of space where gravity happens to be stronger, and where matter begins to accumulate.

“We believe that dark matter halos are the invisible skeleton of the universe,” Shen explains. “Dark matter structures form first, and then galaxies form within these structures. So, we expect the number of bright galaxies should be proportional to the number of big dark matter halos.”

The team developed an empirical framework for early galaxy formation, which predicts the number, luminosity, and size of galaxies that should form in the early universe, given some measures of “cosmological parameters.” Cosmological parameters are the basic ingredients, or mathematical terms, that describe the evolution of the universe.

Physicists have determined that there are at least six main cosmological parameters, one of which is the Hubble constant — a term that describes the universe’s rate of expansion. Other parameters describe density fluctuations in the primordial soup, immediately after the Big Bang, from which dark matter halos eventually form.

The MIT team reasoned that if early dark energy affects the universe’s early expansion rate, in a way that resolves the Hubble tension, then it could affect the balance of the other cosmological parameters, in a way that might increase the number of bright galaxies that appear at early times. To test their theory, they incorporated a model of early dark energy (the same one that happens to resolve the Hubble tension) into an empirical galaxy formation framework to see how the earliest dark matter structures evolve and give rise to the first galaxies.

“What we show is, the skeletal structure of the early universe is altered in a subtle way where the amplitude of fluctuations goes up, and you get bigger halos, and brighter galaxies that are in place at earlier times, more so than in our more vanilla models,” Naidu says. “It means things were more abundant, and more clustered in the early universe.”

“A priori, I would not have expected the abundance of JWST’s early bright galaxies to have anything to do with early dark energy, but their observation that EDE pushes cosmological parameters in a direction that boosts the early-galaxy abundance is interesting,” says Marc Kamionkowski, professor of theoretical physics at Johns Hopkins University, who was not involved with the study. “I think more work will need to be done to establish a link between early galaxies and EDE, but regardless of how things turn out, it’s a clever — and hopefully ultimately fruitful — thing to try.”

We demonstrated the potential of early dark energy as a unified solution to the two major issues faced by cosmology. This might be an evidence for its existence if the observational findings of JWST get further consolidated,” Vogelsberger concludes. “In the future, we can incorporate this into large cosmological simulations to see what detailed predictions we get.”

This research was supported, in part, by NASA and the National Science Foundation.

Share Button

What counts as junk food in upcoming UK advert ban

Online restrictions will start in October 2025, with junk food adverts on TV banned before 21:00.

Share Button